Richard Devlin Chair Oregon

> Ted Ferrioli Oregon

Guy Norman Washington

Patrick Oshie Washington

Bo Downen Vice Chair Montana

Jennifer Anders Montana

> Jim Yost Idaho

Jeffery C. Allen Idaho

August 4, 2020

MEMORANDUM

- TO: Council Members
- FROM: John Ollis, Manager of Planning and Analysis
- SUBJECT: 2021 Power Plan Draft Wholesale Electricity Price and Avoided CO₂ Emissions Rate Forecast

BACKGROUND:

- Presenter: John Ollis
- Summary: This presentation will inform the Council on the results of the 2020 wholesale electricity price forecast and avoided emissions rate study updates for the 2021 Power Plan, and the response from the System Analysis Advisory Committee. These studies have been updated to incorporate plant retirement updates, municipal and utility policies/goals that have been announced since the Seventh Power Plan's Mid-Term Assessment and the 2019 price forecast update. Additionally, this forecast includes climate change data, updated demand WECC-wide, fuel price updates and updated information on generating resources.
- Relevance: The Council periodically updates a 20-year forecast of electric power prices and avoided emissions rate studies using the AURORA model. The AURORA model dispatches all resources in the WECC generating a fundamentals-based wholesale electricity price forecast.

The study of avoided carbon dioxide production rates of the northwest power system will evaluate what the implied avoided carbon emissions rate is in the WECC and the implications for regional conservation replacing the need for that production. Since the development of the midterm and previous avoided emissions rate study, more baseload plant retirements have been announced and further clean policies and goals have been announced. These municipal, utility and state policies/goals along with the retirements and pressures on conventional fossil fuel resources continue to fundamentally change the wholesale market dynamics in the WECC, and this updated price forecast helps Staff incorporate the effects of these changes on Mid-C market prices and the implied avoided market emission rate.

For the 2021 Power Plan, the Regional Portfolio Model will use the power prices from this study to develop electricity price futures which are used as a starting point for resource valuation in the resource strategy analysis. Additionally, the avoided market emissions rate is used in the resource strategy analysis to determine the emissions associated with reliance on the market.

- Workplan: Forecast Wholesale Electricity Prices (A.6.3)
- Background: The Council's wholesale electricity price forecast is a fundamentals-based, forecast that reflects actual power system operation, relationships of supply and demand for, and transmission of electricity. In addition, underlying a wholesale electricity price forecast in this region would be an understanding of the operating characteristics of future and existing supply and demand-side resources, as well as unit commitment, ancillary services, fuel prices, hydro, wind and solar conditions. The AURORA software captures many of these characteristics of the power system well and has a periodically updated WECC database, and thus, AURORA has been the Council's wholesale market electricity price forecasting model.

Additionally, the cost of future carbon dioxide regulation has been a significant factor in resource planning in the Pacific Northwest. To avoid making higher cost resource choices, a direct evaluation of this risk requires an estimate of the carbon dioxide emissions avoided by purchasing conservation or another resource. The Council has periodically updated this study using the AURORA model to help inform Council staff and regional stakeholder analysis.

More Info: Slides for this presentation are pending on ongoing studies and recommendations from the August 5th, 2020 System Analysis Advisory Committee meeting.

Previous studies:

2019 Wholesale Price Forecast Update

Wholesale Price Forecast in 7th Plan Midterm (see 3-10 through 3-17)

Avoided Carbon Dioxide Production Rates in the Northwest Power System

2021 Power Plan Draft Wholesale Electricity Price and Avoided CO2e Emissions Rate Forecast

Power Committee

August 11th, 2020

John Ollis

THE 2021 NORTHWEST

FOR A SECURE & AFFORDABLE ENERGY FUTURE

Timeline – *Wholesale Power Price and Market Emissions Rate Forecast*

Recall: Use of the External Market Information in the RPM

- Regional Portfolio Model (RPM) uses the market price forecast information from AURORA as a first step in its economic analysis or resources and equilibrium pricing.
- RPM accounts for the emissions of market purchases via the avoided market emissions rate calculation.
- Keeps the regional portfolio model from having to perfectly meet the supply demand balance of the region.

under CC BY-NC-ND

External Market Assumptions

Building out the WECC to Regional Reserve Margins

- Before we can run prices, we need to simulate likely plant buildout in all of the WECC.
- Key reasons to build.
- 1. Planning Reserve Margins for each reserve sharing group.
 - Southwest Reserve Sharing Group
 - Rocky Mountain Reserve Sharing Group
 - California ISO (includes part of Baja California)
 - Northwest Power Pool US
 - Northwest Power Pool Canada
- 2. WECC clean and RPS policy levels.
- 3. Peaking capability/need timing

Data Updates of Note Since Last Price Study

- More announced resource retirements
- Higher Clean/RPS targets
- Seasonal hydro, wind and demand shifts due to climate change data in the NW
- Higher demand forecast for California
- Hourly demand shapes from AURORA

NORTHWEST

WECC coal units in operation, decreasing over time...

40,000

*Over 1,300 MW of gas units in CA replacing OTC retirements

Retirements in WECC: 37 GW Nameplate of Capacity

Over Forty Percent of Retirements in the Northwest Power Pool

Clean/RPS Policies: Direct Interpretation Versus Interpolation for Modeling

Buildout Chat with the System Analysis Advisory Committee

Presented preliminary results to the SAAC.

• Both staff and the SAAC were uncomfortable with multiple aspects of the AURORA buildout. Main Suggestions:

1.Back off high electrification assumptions on post 2030 loads in CA.

- 2.Interpolate policy targets instead of direct interpretation.
- 3.Explore further use of dynamic peak credit in AURORA

4. Apply further limitations to gas builds.

Sta up imp fur

Staff has followed up with the SAAC via email with updates on results of the early simulations implementing the suggestions, and will follow up further as more is known.

THE 2021 NORTHWEST POWER PLAN

Buildout Comparison Presented at the SAAC Cumulative Buildout in Nameplate MWs by Year

Limited Gas per Regulatory and Policy Climate (October 2019)									
Year	Solar	Natural Gas	4 Hour Battery	Wind	Solar with Battery	Geotherm al			
2025	16,050	17,082	6,100	38,600	12,300	0			
2030	30,900	19,362	8,100	68,800	18,500	0			
2035	39,000	20,220	8,100	91,400	22,100	546			
2040	42,150	20,649	8,100	100,900	22,700	858			
2045	46,350	20,649	8,100	102,400	22,800	1,170			
SAAC Limited Gas per Regulatory and Policy Climate (August 2020) DRAFT									
Voor									
	Solar	Natural Gas	4 Hour Battery	Wind	Solar with Battery				
2025	Solar 25,950	Natural Gas 31,423	4 Hour Battery 12,100	Wind 22,300	Solar with Battery 14,100				
2025 2030	Solar 25,950 45,450	Natural Gas 31,423 39,545	4 Hour Battery 12,100 12,100	Wind 22,300 47,400	Solar with Battery14,10025,800				
2025 2030 2035	Solar 25,950 45,450 69,300	Natural Gas 31,423 39,545 46,481	4 Hour Battery 12,100 12,100 12,100 12,100	Wind 22,300 47,400 67,200	Solar with Battery 14,100 25,800 43,700 43,700				
2025 2030 2035 2040	Solar 25,950 45,450 69,300 77,250	Natural Gas 31,423 39,545 46,481 51,514	4 Hour Battery 12,100 12,100 12,100 12,100 12,100	Wind 22,300 47,400 67,200 109,400	Solar with Battery 14,100 25,800 43,700 50,300				

Where and what new resources are built by 2025?

During Action Plan time period buildout is or similar magnitude with more new gas resources filling in for thermal retirements and load increases.

THE 2021 NORTHWEST POWER PLAN

12

Where and what new resources are built by 2045?

NW hydro contributes less and the NW demand is higher during times when the rest of the WECC is peaking leading to more builds in the NW.

THE 2021 NORTHWEST POWER PLAN

Capability more than Requirements on Policies/Goals

WECC Plans to Peaks in the Summer

Attempting to Itemize Build Reasons

- Economics (energy only)
 - 1,681 MW (4 CCCT gas plants in Alberta replacing coal retirements)
- Economics (energy, capacity)
 - 3,750 MW of solar (in NWPP) and 15,922 MW of gas (Alberta and Baja CA).
- Clean/RPS Policies
 - 70,950 MW of solar, 51,200 MW of solar plus storage and 131,600 of wind (~90 to 100 aGW of renewable energy) qualify.
 - Only ~62% of that build is necessary, why build over 51 aGW too much

Planning Reserve Margin and Load Growth

• Approximately 12 GW of Battery, 96 GW of renewables and 22 GW of gas built to maintain reserve margins

Buildout Issues

- Gas build in Desert SW seems unlikely, however further limitations seem to exacerbate the problems elsewhere.
- Overbuild of renewables expected to some extent but seems slightly larger than needed to meet policies.
 - Current AURORA setup does not have EE, DR, wind plus battery or other hybrid clean resources.
- California policy will likely include more demand but also more currently unknown demand side measures and behind the meter shaping that may mitigate daily shape issues.

THE 2021 NORTHWEST POWER PLAN

Preliminary Price Discussion

- Previous study pricing for context
- Prices are starting point for developing RPM price futures
- Do not have to be perfect, but need a buildout in AURORA that is resource sufficient and complies with policies to get realistic pricing.

Price Ranges in Midterm and Seventh Power Plan

Figure 3 - 7: Annual Wholesale Electricity Prices Under Different Natural Gas Price Forecasts

Preliminary Price Forecast (1 CC Scenario)

Prices (in 2016 \$/MWh)

Daily Price Shape Q1 (2025 and 2041)

THE 2021 NORTHWEST POWER PLAN

Daily Price Shape Q3 (2025 and 2041)

THE 2021 NORTHWEST POWER PLAN

THE 2021 NORTHWEST

Emissions Rate (Very preliminary)

	lbs per kwh (CO2e)	l	bs per kwh (CO2)	
2021	1	.82		0.16
2022	0	.49		0.46
2023	0	.20		0.32
2024	1	.07		0.21
2025	0	.12		0.90
2026	1	.20		1.07
2027	0	.58		0.21
2028	0	.26		0.89
2029	0	.40		-0.30
2030	0	.56		0.45
2031	0	.84		0.58
2032	2	.11		0.41
2033	1	.19		0.36
2034	0	.95		0.25
2035	1	.19		0.23
2036	0	.96		0.29
2037	0	.47		0.40
2038	0	.67		-0.11
2039	0	.25		0.14
2040	1	.04		0.20
2041	-0	.30		-0.33

THE 2021

Conclusions

- 1. Buildout needs further examination.
- 2. With a vast renewable buildout Mid-C power prices will decrease over time and become very volatile intra-day.
- 3. Emissions rate methodology may have to be slightly revised.

Timeline – Wholesale Power Price and Market Emissions Rate Forecast

