What's Up in Hawaii?

Pacific Northwest Demand Response Project February 25, 2015

Hawaii Electric Systems

4 electric utilities; 6 separate grids

Source: Hawaii Natural Energy Institute

A Tiny Bit of History

- Oahu: centralized power since 1891
- Other islands originally sugar mill based systems; island-wide after WWII.
- IRP process and EE Funding created 1992

 Cost Recovery, LRAM, Shareholder Incentive;
 Gamed by HECO from 1994 to 2006
- Hawaii Energy Regulation and Taxation Report (2003)
- Decoupling plus third-party EE in 2011.

1996-1998 Big Island Crisis

- Puna CT failed; 2 years to reconstruct
- Negative reserve margin
- Consumer Advocate engaged me
 - Hotel, water, sewer standby generators
 - Install diesels at wind projects
 - Replace all light bulbs and shower heads

Hawaii Clean Energy Initiative USDOE / Hawaii MOU 2008

- High oil costs devastating to state economy.
- 35% state solar tax credit.
- 40% RPS by 2030.
- Step up of EE

Cost Drivers In Hawaii

Highest rates and bills in USA

\$.35 - \$.40/kWh; \$200/month vs: \$.125/kWh; \$100/month 30% Federal + 35% State Tax Credit

Grid Parity in Hawaii: We're A Little Past That Point!

Energy solutions for a changing world

Solar Saturation

Energy solutions for a changing world

Residential Solar PV

- Currently 11% saturation
 ~20% in Single Family
- IEEE Limits Long Passed
 - 85% of Min Load
 - 100% of Min Daytime Load
 - 120% of Min Daytime Load
- Proposed: 250% of Min Daytime Load
 With smart inverters

Ramping Issues Becoming Severe

Energy solutions for a changing world

April 30, 2014: Four Orders of the Apocalypse

- Integrated Resource Plan **rejected**.
- Renewable Standards
 Working Group
- DSM Program Review
- MECO Rate Case -Decoupling

Commissioner's Observations Exhibit A: 30 pages

The Commission has not observed an "acceptable course correction" and there is not sufficient evidence, at this time, of progress by the HECO Companies towards developing and implementing a sustainable business model. By contrast, the Commission does note that the state's other electric utility has clearly articulated a strategic vision and made substantial progress in achieving their goals over the same time period.³

- Creating a 21st Century Power System
- Creating Modern T&D Grids
- Policy and Regulatory Reforms
- Focus on Performance Incentive Measures
- Revise rate design to address PV issues

Demand Response Direction

- Can benefit company and customers, by enabling capital avoidance and lower cost
- Develop detailed estimates for 5, 10, 20 yrs
- Evaluate third-party implementation
- Wide range of benefits: peak reduction, load shifting, frequency management, spinning reserves, ramping.

Existing Demand Response Programs

- Residential (RDLC):
 - 32,350 water heaters
 - 3,750 AC units
 - 15 MW
- Commercial
 - Large C&I with Generators
 - Small C&I water heat and AC
 - 13 MW

Existing DR Programs (cont'd)

- Fast DR (Oahu and Maui)
 - 38 / 4 customers
 - 6 MW

Program	Participating Load (customer level impact) ¹ (MW)	2013 Load Impact Estimate (MW)	2013 number of events and tests	2013 Duration
RDLC	14.8 ²	7.2 ^{3,4}	58 events + 19 tests	75 hr 30 min
CIDLC	12.8	12.3 ³	3 events + 2 tests	1 hr 13 min
Fast DR (Hawaiian Electric)	6.1	0.7 ³	54 tests	33 hr 15 min
Fast DR (Maui Electric)	0.2	0.15⁵	29 tests	19 hr 30 min

Maui Wind

- 200 MW peak demand
- Night load ~80 MW
- 72 MW wind
- Minimum thermal load
- Spilling ~15%
 DR Report:
 6,200 water heaters

What Needs Can DR Provide?

Grid Service Requirements	Response Speed* (Mainland)	Response Speed* (Hawaii)	Response Duration	Potential for DR?
Capacity				
Capacity Used to meet demand plus reserve margin; supplied by on-line and off-line resources, including interruptible load	Minutes	scheduled in advance by system operator	If called, must be available for at least 3 hours	-
Ancillary Services				
Contingency Reserve** Reserves to replace the sudden loss of the single largest on-line generator; supplied from online generation, storage or DR	Seconds to <10 min	Within 7 cycles of contingency event	Up to 2 hours	~
Regulating Reserve Maintain system frequency; supplied from on-line capacity that is not loaded	<1 min	2 seconds. controllable within a resolution of 0.1 MW	Up to 30 min	~
Non-Spinning Reserve Used to restore regulating reserves and contingency reserves; supplied by off-line fast start resources or DR	10-30 min	<30 min	2 hours	1
Non-AGC Ramping Resources that can be available prior to quick start generation and can add to system ramping capability	N/A	<2 min	Up to 2 hours	
Black Start Capability The ability of a generating unit to start without system support	N/A	<10 min	Duration of system restoration time	×
Inertial Response Local (i.e. at a generator) response to a change in frequency; supplied by rotational mass of generators, or power electronics of inverter-based resources	N/A	2-3 seconds	2-3 seconds	*
Other				
Accelerated Energy Delivery*** Shifting the demand for energy from high demand evening peak periods to lower demand midday periods, or higher demand morning periods to lower demand overnight periods	N/A	N/A	N/A	1

What Services From Which Programs

	Current Demand Response Programs					
Grid Service Requirements	RDLC	CIDLC	Fast DR (Hawaiian Electric)	Fast DR (Maui Electric)		
Capacity	~	~	~	 ✓ 		
Regulating Reserve	*	*	×	×		
Contingency Reserve*	~	~	*	×		
Non-Spinning Reserve	~	×	1	~		
Non-AGC Ramping	~	*	×	×		
Accelerated Energy Delivery	×	×	×	×		

* Under-frequency response provided by RDLC and CIDLC can provide system protection but is not fast enough to be substituted for spinning reserves under the Companies' contingency reserve requirement.

Alternative Communication Networks

Function	Paging	AMI	Gateway	Cellular	Wi-Fi
Effective Throughput Speed	High*	Low	High	High	High
Network Availability	Always on	Always on	Dependent on customer	Always on	Dependent on customer
Endpoint Online Status	None	Post-event analysis	15 minutes	15 minutes	Immediate
Load Control	Immediate	Scheduled	Immediate or scheduled	Immediate or scheduled	Immediate or scheduled
Acknowledgement	None	Next meter read	15 minutes	Immediate	Immediate
Commissioning	Simple	Complex	Complex	Plug and play	Low
Consumption Display	None	Local real-time	From meter read	From meter read	From meter read
Remote Device Telemetry	No	No	Yes	Yes	Yes
Remote Device Configuration	Some	No	Yes	Yes	Yes

Proposed Future Programs

Program	Grid Service Requirement	Resource				
	Capacity	Water Heaters, central A/C				
RBDLC	Non-AGC Ramping	Water Heaters, central A/C				
	Non Spinning Reserve	Water Heaters, central A/C				
B ⁸ B Elevible	Regulating Reserve	GIWH, central A/C				
R&B Flexible	Accelerated Energy Delivery	GIWH				
CIDLC	Capacity	C&I Curtailable				
CAL Flowible	Regulating Reserve	Central A/C, Ventilation, Refrigeration				
Cal Flexible	Non-AGC Ramping	Central A/C, Ventilation, Refrigeration, Lighting				
Water Dumming	Regulating Reserve	Pumps				
water Pumping	Non-AGC Ramping	Pumps				
Customer Firm Generation	Capacity	Generators				
Dynamic and Critical Peak	Capacity	Unspecified Customer Load				
Pricing	Accelerated Energy Delivery	Unspecified Customer Load				

Pilot Programs

- Grid Integrated Water Heating

 Two technologies deployed
- EV Charging TOU Pilot

Power Supply Improvement Plan

Retire Old Steam

Build Marine Diesels

Energy solutions for a changing world

Some Things NOT Happening

- Full deployment of GIWH
- Water Pumping Controls: Not accepted by water agencies.
- Deployment of Air Conditioning thermal storage
- TOU pricing

Potential for GIWH

- ~150,000 electric water heaters; 70% in multi-family
- ~600 MW of potentially dispatchable load (40%)
- ~75 MW of potential peak load reduction (6%)
- Incremental cost <\$100/kW if integrated at manufacturing.

It's Easy To Spot a Water Heater

Water Pumping Uses ~5% of Hawaii kWh

\$0.20/kWh when power is "cheap" \$0.50/kWh when power is "expensive"

AC Storage

Simple technology; great peak relief. No programs to deploy

Energy solutions for a changing world

...............

CALMAC IceBank® Tank Farm

Current Rate Design Options

- No AMI; all require special metering
- Rider I: Interruptible 4 custs; 3 MW
- Rider M: 2 Hours Curtailable >10 MW
- Rider T: 2-Period TOU Rate
 -+ 3 cents on-peak; -2 cents off peak
- Schedule U: 3-Period TOU Rate
 -5 9 PM Priority Peak
- EV Charging TOU Pilot

Residential Rate Design

Current HECO Residential Rate			Principles-based Residential Rate			
Customer Charge	ge \$9.00/month		Customer Charge		\$9.00/month	
First 350 kWh	\$0.34			Off-Pe	ak	On-Peak
Next 850 kWh	\$0.35		Power	\$0	0.10	\$0.30
Over 1,200 kWh	\$0.37		Delivery	\$0	0.05	\$0.15

ONLY the "Power" rate credited for power fed <u>to</u> the grid.

Large Commercial Rate Design

Current:

Customer: \$60/mo Demand: \$11.69/kW Energy: \$.216/kWh

Alternative				
Customer: \$60/mo				
Demand:				
NCP:	\$2.00/kW			
4 – 8 PM:	\$9.00/kW			
Energy:				
Off-Peak:	\$.12/kWh			
On-Peak:	\$.25/kWh			
Critical:	\$.75/kWh			

Current Chaos

- Dockets Underway:
 - Decoupling
 - Renewable Interconnection / Net Metering
 - HECO Rate Case
- New Chairman
- Acquisition of HEI by NextEra
- Longstanding tension between energy future scenarios

Will Hawaii Ride The Wave of Change?

Energy solutions for a changing world

About RAP

The Regulatory Assistance Project (RAP) is a global, non-profit team of experts that focuses on the long-term economic and environmental sustainability of the power and natural gas sectors. RAP has deep expertise in regulatory and market policies that:

- Promote economic efficiency
- Protect the environment
- Ensure system reliability
- Allocate system benefits fairly among all consumers

Learn more about RAP at www.raponline.org

jlazar@raponline.org

The Regulatory Assistance Project

Beijing, China • Berlin, Germany • Brussels, Belgium • **Montpelier, Vermont USA** • New Delhi, India 50 State Street, Suite 3 • Montpelier, VT 05602 • *phone:* +1 802-223-8199 • *fax:* +1 802-223-8172

www.raponline.org