Regional GHG Emissions – Outlook

Greenhouse Gas and the Regional Power System Symposium

June 4, 2013 Steven Simmons

CO2 Emission Modeling Overview

- The Northwest Power and Conservation Council uses a Production Cost Model or Dispatch Model to forecast long term market prices for power
- Currently using AURORAxmp[®] Electric Market Model by EPIS
- The model simulates the economic dispatch of resources to meet demand
- The model can also track CO2 emissions

Important Model Assumptions Include

- Demand and Conservation
- Availability of generating resources
- Resource characteristics such as heat rates, emission rates, hydro shapes...
- Fuel prices
- CO2 regulatory costs

3

Coal Retirements						
Unit	Location	Began Operations	Scheduled to Close	Capacity		
J.E. Corette	Billings MT	1968	2015	154 MW		
Boardman	Boardman OR	1980	2020	600 MW		
Centralia 1	Centralia WA	1972	2020	730 MW		
Centralia 2	Centralia WA	1973	2025	730 MW		
orthwest Proves and						

GHG Emission Outlook with No Federal
CO2 Regulatory Cost

	<u>2015</u>	<u>2025</u>	<u>2035</u>	
Generation Source	Generation Source % of Overall Generation			
Coal	19 %	15 %	13 %	
Natural Gas	10 %	10 %	14 %	
Wind & Other Renewables	8 %	12 %	13 %	
Emission Source	% of Overall CO2 Emissions			
Coal	82 %	78 %	70 %	
Natural Gas	18 %	22 %	30 %	
Phwer and Conservation Council				

CO2 Emission CO2 Cost Curves - \$/ton emission **Regulatory Cost** 60 **Scenarios** The Council modeled two cases: 50 1. No Federal CO2 Regulatory Cost 2. Phased-in CO2 Federal 40 Regulatory Cost beginning in 2015 \$/ton CO2 The CO2 cost curve used in this study is the Council 6th Power Plan curve deferred for 5 years. 20 As modeled, for those power plants that emit CO2 when they generate electricity, a cost in \$/ton is attached to the generation 10 0 2014 2010 2022 2026 •••• 6th Plan CO2 Cost Federal CO2 Regulatory Cost No Federal CO2 Regulatory Cost 8

